p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
↳ QTRS
↳ DependencyPairsProof
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
P1(p1(s1(x))) -> P1(x)
MINUS2(x, y) -> LE2(x, y)
MINUS2(x, y) -> IF3(le2(x, y), x, y)
LE2(p1(s1(x)), x) -> LE2(x, x)
LE2(s1(x), s1(y)) -> LE2(x, y)
IF3(false, x, y) -> MINUS2(p1(x), y)
IF3(false, x, y) -> P1(x)
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
P1(p1(s1(x))) -> P1(x)
MINUS2(x, y) -> LE2(x, y)
MINUS2(x, y) -> IF3(le2(x, y), x, y)
LE2(p1(s1(x)), x) -> LE2(x, x)
LE2(s1(x), s1(y)) -> LE2(x, y)
IF3(false, x, y) -> MINUS2(p1(x), y)
IF3(false, x, y) -> P1(x)
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
LE2(p1(s1(x)), x) -> LE2(x, x)
LE2(s1(x), s1(y)) -> LE2(x, y)
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(p1(s1(x)), x) -> LE2(x, x)
Used ordering: Polynomial interpretation [21]:
LE2(s1(x), s1(y)) -> LE2(x, y)
POL(LE2(x1, x2)) = 2·x1 + 2·x2
POL(p1(x1)) = 1 + x1
POL(s1(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
LE2(s1(x), s1(y)) -> LE2(x, y)
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(s1(x), s1(y)) -> LE2(x, y)
POL(LE2(x1, x2)) = 2·x1 + 2·x2
POL(s1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
P1(p1(s1(x))) -> P1(x)
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P1(p1(s1(x))) -> P1(x)
POL(P1(x1)) = 2·x1
POL(p1(x1)) = 2 + x1
POL(s1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
MINUS2(x, y) -> IF3(le2(x, y), x, y)
IF3(false, x, y) -> MINUS2(p1(x), y)
p1(0) -> s1(s1(0))
p1(s1(x)) -> x
p1(p1(s1(x))) -> p1(x)
le2(p1(s1(x)), x) -> le2(x, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(x, y) -> if3(le2(x, y), x, y)
if3(true, x, y) -> 0
if3(false, x, y) -> s1(minus2(p1(x), y))